Humble Canal Hydrologic Restoration (ME-11)

wordpress fact sheet banner ME-11-01

The Grand and White Lakes system has been maintained
as a fresh-to-intermediate marsh environment. This has
been accomplished through water management using
natural ridges, levees, locks, and water control structures.
This project replaces the Humble Canal structure that has
fallen into disrepair. This project is compatible with the
overall basin strategy of treating critical areas of marsh
loss within the interior of the basin and managing water
levels with structures to relieve stress on interior wetlands.
The project also relieves this area from continued saltwater
intrusion from the Mermentau River that threatens the
viability of the fresh to intermediate marshes within the
region.

The objective of this project is to restore historical
hydrology to the project area by constructing a water
control structure consisting of five 48-inch diameter by 50-
foot long corrugated aluminum pipes with flap gates and
weir drop inlets along with one 18-inch diameter
corrugated aluminum pipe with screw gate. This structure
will protect the area from Mermentau River saltwater
intrusion and allow high water to drain from the marsh to
the river. Dredging of a small waterway is included to
increase the effectiveness of the structure.

map.jpg

The project is located in the Mermentau basin, on the west
bank of the Mermentau River approximately 2 miles
southwest of Grand Lake at the Humble Canal in Cameron
Parish, Louisiana.

Construction of the project was completed March 5, 2003.
The project is now in the operation and maintenance phase.

This project is on Priority Project List 8.

 

Federal Sponsor is NRCS

Local Sponsor is CPRA

Penchant Basin Natural Resources Plan, Increment 1 (TE-34)

wordpress fact sheet banner TE-34-01

Area problems include major hydrologic alterations, interior marsh erosion, subsidence, saltwater intrusion, herbivory, and hurricane damage.

This project will combine the long-term realignment of Penchant Basin hydrology with restoration and protection measures aimed at maintaining the physical integrity of the area during the transition toward greater riverine influence.

The project includes about 6,520 feet of foreshore rock dike (shoreline protection) along the southern bank of Bayou Chene at its intersection with Bayou Penchant and approximately 35 acres of marsh creation. Two freshwater introduction structures, consisting of a) 10-48” flap gates in Superior Canal and b) steel sheetpile weir with 10’ boat bay and six 5’ x 5’ flap gated openings at Brady Canal, will be constructed to improve freshwater conveyance from Bayou Penchant into the central Terrebonne marshes. On the north bank of Bayou Decade extending from Lake Decade to Turtle Bayou (12,000 ft) an earthen embankment will be maintained and from Voss Canal to Lost Lake (14,000 ft) an earthen embankment will be constructed to 4.0 feet NAVD88 with 6:1 side slopes and rock armoring on the south-face. Within the embankment, a sheetpile weir, with a 10 ft wide boat bay, will be constructed at each of two existing channels that intersect Bayou Decade.

The objectives of the project are to eliminate erosion and create approximately 35 acres of emergent marsh along the southern bank of Bayou Chene at its intersection with Bayou Penchant, convey Atchafalaya River water, sediment, and nutrients to lower Penchant Basin tidal marshes to offset subsidence and saltwater intrusion and maintain the integrity of a deteriorated reach of the north bank of Bayou Decade to minimize encroachment of open water marine influence.

map.jpg

The project is bounded on the north by the Gulf Intracoastal Waterway (GIWW), the east by a north/south line from Lake De Cade to the GIWW, the south by Lake Mechant and Lost Lake, and to the west by a north/south line from Lost Lake to Avoca Island in Terrebonne Parish, Louisiana.

The Louisiana Coastal Wetlands Conservation and Restoration Task Force approved this project on April 24, 1997. Priority Project List (PPL) 6 authorized funding of $7,051,550, while PPL 8 authorized an additional $7,051,550.

Planning, engineering and design of this project included extensive data collection, hydrodynamic modeling, and related investigations. This effort resulted in a change in scope to the project which was approved by the Task Force in April 2008. Construction was completed in August 2011.

This project is on Priority Project List 6.

 

The Federal Sponsor is USDA NRCS

The Local Sponsor is CPRA

Bayou Dupont Ridge Creation and Marsh Restoration (BA-48)

BE.48_banner

Problems: There is widespread historic and continued rapid land loss within the project site and surrounding areas resulting from subsidence, wind erosion, storms, and altered hydrology. Land loss data provided by the U.S. Geological Survey indicates that loss was occurring at a rate of 1.7% per year prior to construction. The natural limits of Bayou Dupont were difficult to determine in some areas because land loss was causing a merge of the bayou to adjacent water bodies. Natural tidal flow and drainage of patterns that once existed through the bayou were circumvented by the increasing area of open water.

Restoration Strategy: Project goals included: 1) creating and nourishing approximately 390 acres of marsh through sediment pipeline delivery from the Mississippi River; and   2) creating over two miles of ridge (10.5 acres of ridge habitat) along a portion of the southwestern shoreline of Bayou Dupont. Sediment from the river was hydraulically pumped to the project site to construct both the marsh and ridge features and additional material was dredged from Bayou Dupont to cover the ridge. The ridge is designed to mimic the configuration of other natural ridges within the watershed, and includes a constructed elevation conducive for the growth of native vegetation such as live oak, hackberry, and yaupon. The ridge is helping to redefine the limits of Bayou Dupont and reestablish the natural bank that once flanked the bayou and  protected adjacent marshes.

BA.48_map

Location: This project is located within the Barataria Basin in Jefferson and Plaquemines Parishes. The marsh creation area is located along Bayou Dupont southeast of the waterbody known as the Pen.

Progress to Date: Construction began in the Fall of 2014 in conjunction with the Mississippi River Long Distance Sediment Pipeline Project (BA-43EB) and Bayou Dupont Sediment Delivery-Marsh Creation #3 (BA-164). Construction of the Bayou Dupont (BA-48) portion was completed in fall of 2015.

This project is on Priority Project List 17.

Hydrologic Restoration and Vegetative Planting (BA-34-2)

34.2_banner_final.png

Problems:
The Lac des Allemands River Basin Initiative identified the following specific problems within the Lac des Allemands Watershed: drainage impairments; water quality impairments; loss of marsh; and decline of cypress forest. Many years of study by Louisiana State University researchers in these swamps have demonstrated that, because of impoundment, subsidence, and inadequate accretion of sediments and organic matter, some areas are already highly stressed and converting to open water, floating aquatic plants, and fresh marsh. Also, the Coast 2050 report suggests that other areas of the swamps throughout the basin will likely convert to open water or floating marsh by the year 2050. These problems are caused by the loss of river water along with the associated sediment and nutrients necessary for swamp health. The loss of river water can be attributed to the leveeing of the Mississippi River. Impoundment caused by roads, drainage canals, and spoil banks is also a major cause of degradation of these swamps.
Restoration Strategy:

The original proposed restoration strategy included installing two small siphons (averaging 400 cubic feet per second) to divert water from the Mississippi River; gapping spoil banks on Bayou Chevreuil; gapping spoil banks along the borrow beside Louisiana Highway 20; installing culverts under Louisiana Highway 20; improving drainage in impounded swamps; and planting cypress and tupelo seedlings in highly degraded swamp areas.

The proposed diversion from the Mississippi River was to bring fresh water, fine-grained sediments, and nutrients into the upper des Allemands swamps, which would have helped maintain swamp elevation, improve swamp water quality, and increase productivity and regrowth of young trees as older trees die. However, after hydrologic modeling and more detailed engineering/design and cost estimation, it was determined that the siphon would cost far more than originally anticipated. For that reason, the CWPPRA Task Force approved the project sponsors’ request to re-scope the project to eliminate the siphon feature, and to focus on the remaining project features.

ba.34.2_map.png

Location: The project is located West of Lac des Allemands in St. James Parish, Louisiana, south of the town of South Vacherie, bordered on the south by Bayou Chevreuil, and on the east by LA Highway 20.

Progress to Date: The Louisiana Coastal Wetlands Conservation and Restoration Task Force approved Phase 1 funding in January 2001. In June 2013, the Task Force approved a request to change the scope of the project to eliminate a siphon feature and focus on the remaining original hydrologic restoration and vegetative planting project features. The Louisiana Coastal Protection and Restoration Authority performed the engineering and design services. Design was completed in October 2015 and Phase 2 funds for construction was approved by the Task Force in January 2016. Construction activities for excavation and placement began in October 2017 and ended on December 20, 2017, vegetative plantings occurred in late January, and officially completed on February 2, 2018.

The three (3) principal project features included:

1. Eight (8), 400-foot-long, strategically designed gaps were cut in the northern Bayou Chevreuil spoil bank to reverse the effects of impoundment;

2. Sixteen (16) spoil placement areas were created on each side of the channel banks; (1 placement area on both sides of each gap) to beneficially use the dredged material on site;

3. Seven hundred (700) Bald Cypress and one hundred (100) Water Tupelo saplings were planted in the constructed spoil placement areas to start swamp regeneration and swamp productivity.

This project enhanced 2,395 acres of swamp habitat that would have continued to degrade without the project.

This project is on Priority Project List (PPL) 10.

The sponsors include:

Federal Sponsor: U.S. Environmental Protection Agency

Local Sponsor: Coastal Protection and Restoration Authority (CPRA)

 

 

Black Bayou Hydrologic Restoration (CS-27)

wordpress fact sheet banner CS-27-01-01

The purposes of the Black Bayou Hydrologic Restoration
project are to (1) restore coastal marsh habitat, and (2) slow
the conversion of wetlands to shallow, open water in the
project area. The project limits the amount of saltwater
intrusion into the surrounding marsh and canals from the
GIWW and reduces erosion caused by wave action from
nearby boats and tides.

A 22,600-foot rock dike was placed on the southern spoil
bank of the GIWW. A barge bay weir (70-foot bottom
width) was constructed in Black Bayou Cutoff Canal. Weirs
with boat bays (10-foot bottom widths) were constructed in
Burton Canal and Block’s Creek. A collapsed weir was
plugged and replaced by a fixed crest steel sheet-pile weir
with a state-of-the-art, self-regulating tidegate. Spoil
material from weir installation and the dredging of access
routes was deposited in nearby open water areas to the
height of marsh elevations. The $3 million construction
contract included installation of 55,000 marsh plants over the
next two planting seasons.

map.jpg

This project, sponsored by the National Marine Fisheries
Service and the Louisiana Department of Natural Resources,
is a 25,529 acre wetland located in Cameron and Calcasieu
Parishes, Louisiana. Bordered by the Gulf Intracoastal
Waterway (GIWW), Sabine Lake, Black Bayou, and Gum
Cove Ridge, the project area consists of tidally-influenced
intermediate and brackish marshes.

Construction is completed. Installation of vegetative
plantings were completed in April 2002. The monitoring
plan was finalized in March 2000, and monitoring has
begun.

This project is on Priority Project List 6.

Federal Sponsor: NOAA 

Local Sponsor: CPRA

Salt Water Intrusion

When it comes to Louisiana, there is no one reason for coastal land loss. Causes are both natural and man-made, but when those forces combine, they are detrimental to Louisiana’s coast. One example contributing to these synergistic forces is known as salt water intrusion.

Facts about Salt Water Intrusion: [4]

  • May occur in freshwater systems like aquifers or coastal marshes.
  • Is the movement of saltwater into interior areas or underground sources such as aquifers of freshwater marsh.
  • Most common in coastal regions, where freshwater is displaced by the inland movement of saltwater from the ocean.
  • Can also occur inland, far away from an ocean, as freshwater is pumped out from underground reservoirs and the salt-laden water from surrounding salty layers of the earth flow in.
  • Most common cause of saltwater intrusion is the pumping of freshwater from wells near coasts.
  • Climate change can increase saltwater encroachment along coastal regions as sea level rises.
  • Increased salinity of coastal freshwater can threaten the plant life and wildlife of coastal areas, destroy habitats such as marshes, and force the abandonment of drinking-water supplies.

swi_22

Coastal Louisiana is currently experiencing higher than expected salinity in traditionally freshwater marshes, waterways, and reservoirs [1]. It is possible for wildlife to adapt to locally saline conditions, but that is a process that requires time. A study by two professors at the University of Louisiana at Lafayette concluded:

  • Resident marsh fishes have genetic adaptations for localized salinity conditions [1].
  • Continued adaptation will be most successful if salinity increases gradually [1].
  • The existence of adaptation to salinity tolerance will be most important in aiding survival during surges of high salinity, such as those associated with hurricanes [1].

At the same time that sea level is rising, man-made actions are intensifying salt water intrusion through [4]:

  • Canal dredging, including oil and gas access canals
  • Channelization or straightening of natural waterways
  • Construction of levees for flood control
  • General development activities in the coastal zone

CWPPRA hydrologic restoration projects help reduce the inland march of salt water. Culverts and pumps restore the flow of freshwater into marshes, while locks and weirs create “one-way” channels out of the marsh that salt water can’t access.

Sources:

[1] Leberg, P. and Klerks, P. 2004. Final Report: Saltwater Intrusion On The Gulf Coast: An Assessment Of The Interactions Of Salinity Stress, Genetic Diversity And Population Characteristics Of Fish Inhabiting Coastal Marshes. University of Louisiana at Lafayette (ULL). Available: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/5385 [May 22, 2018].

[2] Spatafora, James. 2008. Saltwater Intrusion of Coastal Aquifers in the U.S. Available: http://kanat.jsc.vsc.edu/student/spatafora/default.htm#homepage  [May 22, 2018].

[3] Encyclopedia.com. 2018. Available: https://www.encyclopedia.com/environment/energy-government-and-defense-magazines/saltwater-intrusion [May 22, 2018].

[4] Southern Regional Water Program. 2018. Louisiana Environmental Restoration. Available: http://srwqis.tamu.edu/louisiana/program-information/louisiana-target-themes/watershed-restoration/ [May 22, 2018].

[5] Fowler, Kristen. “Saltwater Intrusion – EnvS 546 Univ of Idaho”. ” 23 April 2016. Online video clip. YouTube. Accessed on 24 May 2018. <http://www.youtube.com/watch?v=puSkP3uym5k>

[6] PBS Newshour. “Testing the limits of saltwater intrusion”. 17 September 2015. Online video clip. Youtube. Accessed on 24 May 2018. https://www.youtube.com/watch?v=75CoHNQVbY8

[7] LSU AgCenter Video Archive. “Saltwater intrusion threatens rice acres”. 8 Jan 2016. Online video clip. Youtube. Accessed on 24 May 2018. https://www.youtube.com/watch?v=Z4TGPtq4bD0

[8] Stanford Alumni. Rosemary Knight, “Sentinel Geophysics: Imaging Saltwater Intrusion from Monterey to Santa Cruz”. 2 April 2014. Online video clip. Youtube. Accessed on 24 May 2018. https://www.youtube.com/watch?v=k4XcBx7OT3Y

 

 

 

Black Bayou Culverts Hydrological Restoration (CS-29)

wordpress fact sheet banner-01

The marsh within this area has been suffering from excessive water levels within the lakes subbasin that kills vegetation, prevents growth of desirable annual plant species, and contributes to shoreline erosion. Black Bayou offers a unique location in the basin where the water in the lakes subbasin and the outer, tidal waters are separated by only a narrow highway corridor.

Project components include installing ten 10 foot by 10 foot concrete box culverts in Black Bayou at the intersection of Louisiana Highway 384. The structure discharge will be in addition to the discharges provided by Calcasieu Locks, Schooner Bayou, and Catfish Point water control structures.

map.jpg

The project features are located in southern Calcasieu Parish, Louisiana. The majority of the project area is located east of Calcasieu Lake and includes areas north of the Gulf Intracoastal Waterway and west of Grand Lake in Cameron Parish, Louisiana.

Construction has been completed.

This project is on Priority Project List 9.

Federal Sponsor: NRCS

Local Sponsor: CPRA

Cameron-Creole Freshwater Introduction

CS-49-01

Virtually all of the project area marshes have experienced
increased tidal exchange, saltwater intrusion, and reduced
freshwater retention resulting from hydrologic changes
associated with the Calcasieu Ship Channel and the GIWW.
In addition, thousands of acres of marsh were damaged by
Hurricane Rita and again, more recently, by Hurricane Ike.
Because of man-made alterations to the hydrology, it is
unlikely that those marshes will recover without
comprehensive restoration efforts. The Cameron-Creole
Watershed Project has successfully reduced salinities and
increased marsh productivity. However, the area remains
disconnected from freshwater, sediments, and nutrients
available from the GIWW.

The freshwater introduction project would restore the
function, value, and sustainability to approximately 22,247
acres of marsh and open water by improving hydrologic
conditions via freshwater input and increasing organic
productivity.

map

The project area is located on the east side of Calcasieu Lake
and west of Gibbstown Bridge and Highway 27.

This project is on Project Priority List (PPL) 18.

The Cameron-Creole Freshwater Introduction sponsors include:

Keep up with this project and other CWPPRA projects on the project page.

Lost Lake Marsh Creation and Hydrologic Restoration

TE-72

Significant marsh loss has occurred between Lake Pagie and
Bayou DeCade to the point that little structural framework
remains separating those two waterbodies. Northeast of Lost
Lake, interior marsh breakup has resulted in large, interior
ponds where wind/wave energy continues to result in marsh
loss. West of Lost Lake, interior breakup has occurred as
a result of ponding and the periodic entrapment of higher
salinity waters during storm events.

Approximately 465 acres of marsh will be created between
Lake Pagie and Bayou DeCade, north of Bayou DeCade,
and along the northwestern Lost Lake shoreline. Marsh
creation will restore/protect some key features of structural
framework (i.e., lake rim and bayou bank) within the area.
Borrow material will be taken from within Lost Lake and
pumped via a hydraulic dredge into the marsh creation sites.
Tidal creeks will be constructed within the marsh creation
cells to ensure tidal connectivity and prevent ponding within
the created marsh. In addition, 30,000 linear feet (22 acres)
of terraces will be constructed to reduce fetch in an area of
deteriorated marsh north of Bayou DeCade.
Two fixed-crest weirs along Carencro Bayou will be replaced
with variable-crest structures. At certain times of the year,
Carencro Bayou is an excellent source of fresh water and
sediments from the Atchafalaya River/Four League Bay
system. However, delivery of that water into the marshes
west of Lost Lake is limited by fixed-crest weirs which limit
water exchange. Installing structures with bays/gates will
increase freshwater and sediment delivery. In addition, two
fixed-crest weirs near Rice Bayou will be replaced with
variable-crest structures to provide flow-through conditions
in the system (i.e., water enters the system from Carencro
Bayou and exits through the structures near Rice Bayou).
A similar structure will be installed along Little Carencro
Bayou to increase freshwater and sediment delivery into the
marshes north of Lost Lake.

te72_20160519_v2

The project is located in the Terrebonne Basin, Terrebonne
Parish, near the vicinity of Lost Lake.

This project is on Project Priority List (PPL) 19.

The Lost Lake Marsh Creation and Hydrologic Restoration project sponsors include:

Keep up with this project and other CWPPRA projects on the project page.

CWPPRA Project Construction

Did you know:

CWPPRA projects are constructed within 5-7 years from initiating engineering and design.

CWPPRA projects are built in a series of phases. The first in the series of phases is Phase Zero which includes conceptual project development. Once a project is approved through the CWPPRA selection process, the project undergoes two subsequent phases to completion. Following the initial phase is Phase One where a combination of pre-construction data collection and engineering and design is incorporated. Lastly, Phase Two encompasses construction, project management, construction supervision and inspection,  and operations, maintenance, and monitoring or OM&M. CWPPRA serves as the foundation for the development of restoration science and identification of project needs that have become the platform for other restoration funding programs. Over 25 years, the Coastal Wetlands Planning, Protection, and Restoration Act has authorized 210 projects, benefiting approximately 100,000 acres.