Looking Back

Former President George H.W. Bush signed Public Law 101-646, Title III CWPPRA into law in 1990 to combat the national issue of coastal land loss. Over 25 years after he left office and a week after the late President’s day of mourning, this legislation is still providing protection to billions of dollars’ worth of industry, major human settlements, and beautiful ecosystems.

At 28 years of projects and counting, CWPPRA is among the longest-standing federally-funded restoration ventures in the country, as well as one of the most successful. To date, 210 projects have been authorized across Louisiana’s coastal zone to restore 100,000+ acres of wetlands. Each year of operation, CWPPRA has approved funding on multiple projects scattered across our coast. The locations of our projects can be found at https://lacoast.gov/new/About/Basins.aspx.

CWPPRA projects are proposed by anyone and developed in conjunction with one of our 5 federal managing agencies and Louisiana’s Coastal Protection and Restoration Authority. The process of project selection is always a rigorous competition between candidate projects across Louisiana’s coast. Each proposal presents estimated ecological benefits, cost estimates, and a detailed plan for the desired project. At the beginning of each calendar year, Regional Planning Team meetings are held across the coast to hear proposals. The proposed projects are compiled into an annual Project Priority List (PPL). Upcoming proposal meetings can be found Jan 29-31, 2019 on our calendar at https://lacoast.gov/calendar/. Over the next year the CWPPRA Technical Committee and Task Force narrow the list of candidate projects. In December, the Technical Committee recommends their top 4 projects to the Task Force. The Task Force finally votes in January on the 4 projects they will fund for Phase I Engineering and Design. This annual cycle will complete its 28th round in late January 2019.

CWPPRA is excited about wrapping up PPL 28 next month and starting on PPL 29! Be on the lookout for announcements about projects chosen for funding at the January 24th Task Force meeting. We look forward to continuing our efforts to #ProtectOurCoast!

 

Featured image from https://projects.propublica.org/louisiana/

Advertisements

Soil Pollution

Today is World Soils Day, time to talk about soil pollution and wetlands! Soil pollution is often referred to as “invisible” because, although pollution can be detected through testing [LINK TESTING], it is much more difficult to see with the naked eye. Some of the biggest players in soil pollution today are improper waste management, agricultural runoff, and industrial processes. You may not think you are directly impacted by soil pollution, but you are.

Polluted soil in agricultural fields is arguably the most direct impact to humans because the pollutants are taken into the crop, whether it is a plant or animal, and make it into our food stream. [1] Pollutants in soils are also less hospitable to plant recruits, which is terrible news for coastal Louisiana. Our coastal wetlands provide us with many things that we rely on, and we cannot afford to lose our wetlands to preventable pollution. When soils do not incorporate healthy plant roots, they are much more susceptible to erosion. When moving sediments around, CWPPRA wants to make sure that plants can re-establish effectively, so they want healthy soils. [2]

Areas with unsustainable levels of pollution are spreading, and non-point source pollution, which includes road and agricultural runoff, is very hard to track and very hard to remediate. Pollutants are not easily scrubbed from soils on a mass scale and so they follow the flow of water. Runoff travels through watersheds just like clean water and makes its way into our coastal wetlands with damaging consequences. Coastal wetlands are resilient ecosystems, but they have limits. We cannot overburden them with harmful, carefree attitudes towards pollution. Our coast deserves to be protected. Our coast deserves to be respected.

[1] https://www.epa.gov/sites/production/files/documents/bioaccumulationbiomagnificationeffects.pdf

[2] https://www.lacoast.gov/crms/crms_public_data/publications/CRMS_FactSheet_Web.pdf

Featured image from https://soilsmatter.wordpress.com/2017/12/15/are-wetlands-really-the-earths-kidneys/

America Recycles And So Do We

Recycling is a great practice at home, but it reaches far beyond taking materials out of the waste stream. Tomorrow, November 15th, is designated as America Recycles Day, so today’s Wetland Wednesday is hopeful about the future of sustainability.

New materials require exploration and processing that can be destructive to ecosystems. Plastics, some of the most common materials in the product stream today, are largely recyclable. As a crude oil byproduct, producing new usable plastics requires a lot of energy. The same goes for many other recyclable materials. Paper products, various metals, and glass all take a lot of energy to produce, then they quickly find their way into landfills instead of being reused. Landfills produce a wide array of chemicals that often leach into the ground due to poor containment practices, and they can contaminate watersheds. Once those chemicals get into a watershed, they can significantly decrease the health of wetlands across huge swaths of land over time. To further the polluting effects, drilling for oil to meet a growing desire for fossil fuels is one of the most detrimental practices to wetlands. More than 5 years after the Deepwater Horizon oil spill in the Gulf of Mexico, Louisiana wetlands continued to lose ground due to the spill’s impact. [1]

Recycling is not a perfect alternative to single-use plastics, and there are other ways to reduce our consumption of resources. For example, mitigating loss of byproducts by finding new and inventive applications can greatly reduce consequences. Large-scale food manufacturing leaves plenty of byproduct as leftover plant material that can be used as livestock feed, potentially as biofuels, or fertilizer. In the meat industry, byproducts are often further processed and commercialized to maximize the use of all parts of animals. CWPPRA and our partners have changed some practices in recent years to be more efficient when using resources, for example beneficial use of dredged material (yes, we recycled our header image). Mandatory dredging of shipping and navigational channels produces a bounty of sediment that was lost in the past, but we can now use that material in restoration projects. This exciting new practice has already been implemented in a few CWPPRA projects to restore marshland and nourish pre-existing wetlands.

Our coast faces many human-caused threats, and its future depends, in part, on practices becoming more sustainable. By using new technologies to better use resources, CWPPRA hopes that Louisiana’s natural splendor and resilience can continue to benefit future generations.

[1] https://pubs.er.usgs.gov/publication/70178409

 

Whiskey Island Back Barrier Marsh Creation (TE-50)

wordpress fact sheet banner TE-50-01

Gulfside and bayside erosion has resulted in the narrowing of Whiskey Island (and the entire Isles Dernieres chain) as the two shorelines migrate toward each other, resulting in a 68 percent decrease in average width for the Isles Dernieres. Within 100 years, the entire subaerial portion of the Isles Dernieres barrier island system is expected to disappear except for small land fragments associated with the western end of Whiskey Island and the eastern end of East Island. However, some estimates project the Isles Dernieres will disappear much earlier. Other predictions suggest that, without restoration, Whiskey Island could become a subaqueous sand shoal by 2019. Another CWPPRA restoration project, Whiskey Island Restoration (TE-27), which included placement of dredge material, vegetative planting, and sand fencing, was completed in 2000.

The goal of the TE-50 project is to increase the longevity of the previously restored and natural portions of the island by increasing the island’s width. Increasing the island’s width will help to retain sand volume and elevation. Approximately 319 acres of back barrier intertidal marsh habitat, 5,865 linear feet of tidal creeks, three 1-acre tidal ponds and 13,000 linear feet of protective sand dune were created by semiconfined disposal and placement of dredged material. The sediment was dredged from a sediment source in the Gulf of Mexico near the island. The area was planted with native marsh vegetation to colonize and protect the newly-placed marsh soil.

map.jpg

Whiskey Island, one of five islands that make up the Isles Dernieres barrier island chain, is located 18 miles southwest of Cocodrie in Terrebonne Parish, Louisiana. The island is surrounded by Coupe Colin to the west, Whiskey Pass to the east, Lake Pelto, Caillou Boca, and Caillou Bay to the north, and the Gulf of Mexico to the south.

The CWPPRA Task Force approved funding for construction (phase 2) at the February 13, 2008 Task Force meeting. Construction began in March 2009 and initial construction was completed in November 2009.Vegetative plantings were installed at the project site in June of 2010 and October 2011.

This project is on Project Priority List 13.

Federal Sponsor: EPA

Local Sponsor: CPRA

Living Shorelines

According to NOAA, one of our managing agencies, a living shoreline is “A protected and stabilized shoreline that is made of natural materials such as plants, sand, or rock.” [1] In some situations, living shorelines are a better option than hardened shoreline protection because they have more movement of natural sediment, the ability to grow, and the obvious aesthetic value of a natural area.

‘Living shorelines’ can refer to multiple restoration techniques and coastal environments; for CWPPRA, a living shoreline can mean vegetative planting on a marsh creation cell or using a shoreline protection barrier that promotes oyster reef growth. Living restored shorelines help maintain the integrity of ecosystems, but they also provide benefits to recreation and potentially to commerce. One big push in restoration over the past few years has been artificial oyster reefs which provide wave attenuation, natural water filtration, and a harvestable population of oysters for the seafood industry. [2]

Illustration, Courtesy of NOAA [1]
Vegetated marsh provides similar benefits to artificial oyster reefs and is a tried-and-true restoration strategy. Many marsh creation projects will naturally revegetate thanks to seed banks in borrow sites but some need management to limit invasive species. In more vulnerable sites, CWPPRA actively plants native species like smooth cordgrass and California bulrush to give them an advantage against invasive populations.

CWPPRA understands that successful restoration projects, including shoreline protection, help keep ecosystems intact and productive. A changing coast means we need changing solutions, and we will strive to find better alternatives to maintain the natural environment.

[1] https://oceanservice.noaa.gov/facts/living-shoreline.html

[2] https://www.smithsonianmag.com/innovation/storms-get-bigger-oyster-reefs-can-help-protect-shorelines-180967774/

Featured image from https://oceanbites.org/oyster_reef_restoration/

 

Coastwide Vegetative Planting (LA-39)

 

The coastal restoration community has long recognized the benefits of vegetative plantings in restoration. Many marsh creation and most terracing projects require plantings to insure success. Coastal shoreline plantings have also proven to be very effective and some have demonstrated the ability to not only stop shoreline erosion but to facilitate accretion, the process of increasing sediments. Recent hurricane events have exposed a need to have a mechanism in place where large-scale planting efforts can be deployed in a timely manner to specifically targeted areas of need, anywhere along the coast. Although the CWPPRA program can fund specific largescale planting projects, the normal program cycle for individual projects can delay needed restoration plantings for a number of years.

The goals of this project are to facilitate a consistent and responsive planting effort in coastal Louisiana that is flexible enough to routinely plant on a large scale and be able to rapidly respond to critical areas of need following storm or other damaging events. This project set up an advisory panel consisting of representatives from various state and federal agencies who would assist in the selection of projects for funding. The project also set up a mechanism by which project nominations would be submitted for consideration. The equivalent of 90 acres of interior marsh and 40,000 linear feet of coastal shoreline will be planted per year over a 10 year period to effectively create/protect a total of 779 net acres of marsh over the 20-year project life.

map.jpg

The project features are located in the coastal zone of Louisiana.

This project is on Priority Project List 20. Three sites have been planted with Year One funding, and three sites are scheduled to be planted in 2014 with Year Two funding.

 

Federal Sponsor: NRCS

Local Sponsor: CPRA

Pass Chaland to Grand Bayou Pass Barrier Shoreline Restoration (BA-35)

Above image from lacoast.gov

Reasons for Restoration:

Prior to construction, wetlands, dune, and swale habitats within the project area had undergone substantial loss due to subsidence, absolute sea-level rise, and marine- and wind induced shoreline erosion. In addition, oil and gas activities, such as pipeline construction, also contributed to the loss.

Marine processes acting on the abandoned deltaic headlands rework and redistribute previously deposited sediment. Fragmentary islands develop due to breaches in the barrier headland. Subsequently, increased tidal prism storage (the total volume of salt water that moves in and out of a bay with the tide) and storm-related impacts have led to inlet and pass formation across the newly formed islands. The Bay Joe Wise beach rim was receded and decreased to a critical width that was susceptible to breaching.

Land area in the project area had decreased from 1932 to 2000. Storms occur approximately every 8.3 years along the Barataria shoreline. Because approximately 100 feet of shoreline is eroded with each storm, shorelines of 100 feet or less are considered in imminent danger of breaching.

Restoration Strategies:

The project’s objectives were: 1) preventing the breaching of the Bay Joe Wise shoreline by increasing barrier shoreline width; 2) increasing back-barrier, emergent marsh area by some 226 acres to maintain the barrier shoreline; and 3) creating emergent marsh suitable for tidal aquatic habitats.

The Project features included a constructed beach and dune platform along approximately 2.7 miles of the gulf shoreline. Constructed landward of the beach and dune was a marsh platform with an average width of 860 feet spanning the entire project length. A water exchange channel was incorporated on the western end of the Project to facilitate flushing of Bay Joe Wise through Pass Chaland. The Project created over 420 acres requiring 2.95 million cubic yards of fill dredged from ebb shoal borrow areas. Other project features included installation of sand fencing concurrent with dune construction, dune and marsh vegetative plantings, and post-construction gapping of retention dikes.

FP_BA-35_Banner map.png Above image from lacoast.gov

Location:

The project is located in the Barataria Basin, between Pass Chaland and Grand Bayou Pass in Plaquemines Parish, Louisiana.

This project is on Priority Project List (PPL) 11.

 

Source: 

Louisiana Coastal Wetlands Conservation and Restoration Task Force “Pass Chaland to Grand Bayou Pass Barrier Shoreline Restoration (BA-35)”. 2 March 2018, https://www.lacoast.gov/reports/gpfs/BA-35.pdf.