Sustainable Fisheries

Some of you may remember the 1989 film “Field of Dreams,” and perhaps the famous quote “If you build it, he will come.” Meant as motivation to build a baseball diamond in a corn field, the line encourages dreaming big and following your passion. It can also apply directly to environmental protection and restoration. CWPPRA builds wetlands, and ecologically diverse communities come. They may take a long time, but they will come. Creating a resilient environment requires hard work, and the environment will return on investment many times over.

Biodiversity has a massive positive effect on the productivity of a system, [2] and we in Louisiana have some of the most productive wetland ecosystems in the United States. Coastal fisheries today produce about 40% of the world’s wild-caught seafood, according to the WWF, [1] and wild-caught fish rely heavily on a healthy ecosystem to produce populations large enough to harvest.  Unfortunately, many fish communities are over- exploited and have a lot of bycatch, causing  species declines and shifts in the health of the community. It doesn’t have to be this way, though. Sustainable fishing is an achievable goal.

By using our bountiful resources and productive wetlands, we can cultivate thriving ecosystems that don’t need much maintenance at all. A perfect model would require no feed, no destructive fishing methods like trawling or wasteful bycatch, and it would have numerous benefits to wetland health such as better nutrient capture, pollutant filtration, food production, biodiversity, and even improved resilience. [3]  Such a complex problem cannot be solved overnight, but focusing on the health of our fisheries will drive them to be more sustainable, and sustainable fisheries will keep our critical $2.4B seafood industry alive. Our coastal zone is a great asset that provides us with plentiful resources, and we have a responsibility to use those resources, such as the fisheries, in a sustainable manner. Programs like CWPPRA emphasize the benefits of sustainability on a large scale and seek to apply those practices in their restoration projects.

 

[1] http://wwf.panda.org/our_work/oceans/solutions/sustainable_fisheries/

[2] http://science.sciencemag.org/content/314/5800/787

[3] https://www.ted.com/talks/dan_barber_how_i_fell_in_love_with_a_fish?language=en

Featured image from https://e360.yale.edu/features/can-deepwater-aquaculture-avoid-the-pitfalls-of-coastal-fish-farms

 

 

Advertisements

America Recycles And So Do We

Recycling is a great practice at home, but it reaches far beyond taking materials out of the waste stream. Tomorrow, November 15th, is designated as America Recycles Day, so today’s Wetland Wednesday is hopeful about the future of sustainability.

New materials require exploration and processing that can be destructive to ecosystems. Plastics, some of the most common materials in the product stream today, are largely recyclable. As a crude oil byproduct, producing new usable plastics requires a lot of energy. The same goes for many other recyclable materials. Paper products, various metals, and glass all take a lot of energy to produce, then they quickly find their way into landfills instead of being reused. Landfills produce a wide array of chemicals that often leach into the ground due to poor containment practices, and they can contaminate watersheds. Once those chemicals get into a watershed, they can significantly decrease the health of wetlands across huge swaths of land over time. To further the polluting effects, drilling for oil to meet a growing desire for fossil fuels is one of the most detrimental practices to wetlands. More than 5 years after the Deepwater Horizon oil spill in the Gulf of Mexico, Louisiana wetlands continued to lose ground due to the spill’s impact. [1]

Recycling is not a perfect alternative to single-use plastics, and there are other ways to reduce our consumption of resources. For example, mitigating loss of byproducts by finding new and inventive applications can greatly reduce consequences. Large-scale food manufacturing leaves plenty of byproduct as leftover plant material that can be used as livestock feed, potentially as biofuels, or fertilizer. In the meat industry, byproducts are often further processed and commercialized to maximize the use of all parts of animals. CWPPRA and our partners have changed some practices in recent years to be more efficient when using resources, for example beneficial use of dredged material (yes, we recycled our header image). Mandatory dredging of shipping and navigational channels produces a bounty of sediment that was lost in the past, but we can now use that material in restoration projects. This exciting new practice has already been implemented in a few CWPPRA projects to restore marshland and nourish pre-existing wetlands.

Our coast faces many human-caused threats, and its future depends, in part, on practices becoming more sustainable. By using new technologies to better use resources, CWPPRA hopes that Louisiana’s natural splendor and resilience can continue to benefit future generations.

[1] https://pubs.er.usgs.gov/publication/70178409

 

UL-Lafayette Fête de la Terre

What better way to spend a Friday afternoon than with jambalaya, Cajun music, and conservation? That is how the CWPPRA outreach team and many other organizations spent last Friday, April 20th, at the UL-Lafayette Fête de la Terre Expo. The expo showcased many wonderful local groups including, but not limited to, the Citizens’ Climate Lobby, the TECHE Project, and the Bayou Vermilion District, all hosted by the ULL Office of Sustainability.

Students visiting the expo could learn about how long it takes for different types of litter to decompose naturally, how solar panels are used to generate power, and whether or not to recycle different waste products. During their visit, they could grab free jambalaya, listen to the Cajun jam session, or decorate their very own reusable grocery bag. There are so many resources that help our community celebrate conservation, and the expo was a beautiful day for getting ULL students and faculty involved, interested, and informed.

 

0420181044c0420181044b

The Future of Urban Deltas

An urban delta may be defined as a city home to as many as half a billion people living and working in a deltaic zone where rivers meet the ocean. These communities are coastal, riparian, & urban which are threatened by increasingly strong typhoons, hurricanes, uneven rainfall patterns with droughts [6].

According to New America, the 3 major global trends are climate change, rural to urban migration, and urban economic concentration. The Delta Coalition is the world’s first international coalition of governments joining forces to share knowledge, innovation and sustainability practices to create more resilient urban deltas [1].

Urban Delta_Image 2

Policy makers, politicians, NGOs, academics, engineers, designers and consultants worked and talked together about the challenges and opportunities of the world’s urban deltas at a Sustainable Urban Deltas conference in 2016 [4].

Deltaic countries who have joined The Delta Coalition  include: Bangladesh, Colombia, Egypt, France, Indonesia, Japan, Korea, Mozambique, Myanmar, the Netherlands, the Philippines, and Vietnam [6]. Other organizations moving forward toward sustainable urban deltas are PRIVA, and Sustainable Urban Delta where waste water recycling, or creating bio-fuel from food waste are examples of sustainable innovations for urban deltas [5].

World City Populations 1950-2030

Urban Population Image 1

By one count, over 1/4 of the world’s 136 largest port cities occupy deltaic formations [2] and the percentage of people living in urban areas “has grown from 34% in 1960 to a projected 66% in 2050” [6].

Urbanization is directly related to economic growth, creating more jobs, and increasing population; though this steadfast increase is positive in some ways, it also increases the chance of poor governmental preparedness resulting in poor living conditions, quality of life, and slums [6].

“It is clear we can only solve the world’s environmental problems if we solve the problems of our cities first” [1]. — According to Chief Curator of IABR ( International Architecture Biennale Rotterdam), world leaders must  invest in learning the capacity of cities, experiment, and join networks while creating new and positive urban visualizations towards a productive, clean and socially inclusive city [3].

In regards to Louisiana’s urban delta, CPRA developed Louisiana’s Comprehensive Master Plan for a Sustainable Coast to incorporate coastal wetland protection and restoration for coastal and deltaic communities, and CWPPRA projects are consistent with the Master Plan.

Urban Delta_Image 1

Continue reading “The Future of Urban Deltas”

Fritchie Marsh Creation and Terracing

banner-01

A significant portion of the Fritchie Marsh was lost due to
Hurricane Katrina. Post storm shallow open water areas
dominate the landscape which limits the effectiveness of the
PO-06 CWPRRA project. Wetlands in the project vicinity
are being lost at the rate -1.09%/year based on USGS
data from 1985 to 2015. These marshes cannot recover
without replacement of lost sediment, which is critical if the
northshore marshes are to be sustained.

Project goals include restoring and nourishing marsh.
Specific goals of the project are: 1) create approximately 291
acres of marsh; 2) nourish approximately 49 acres of existing
marsh; and 3) construct about 36,610 feet of earthen terraces
or 26 emergent acres.

An alternative analysis was conducted leading to the
selection of features and configuration to compliment and
work synergistically with the existing PO-06 project and
planned mitigation and restoration projects in the Fritchie
Marsh. A robust engineering cost is included to evaluate
increasing the project size if costs allow or adjust the
layout, if needed during Phase 1. Approximately 2 million
cubic yards of material would be placed confined to restore
291 acres and nourish approximately 49 acres of brackish
marsh. Material would be dredged from a borrow site in
Lake Pontchartrain. The borrow site would be designed to
avoid and minimize impacts to aquatic habitat and existing
shorelines. Approximately 26 acres of earthen terraces would
be constructed within various locations totaling approximately
36,610 feet or 523 acres of terrace field. All containment
dikes would be gapped or degraded no later than three years
after construction to facilitate the development of tidal marsh
functions supportive of estuarine species. The terraces would
be planted as well as 50% of the created marsh acres to
expedite colonization and enhance stabilization.

PO173_20160211

Region 1, Pontchartrain Basin, St. Tammany Parish, located
approximately three miles southeast of Slidell, Louisiana. A
substantial portion of the project is located on Big Branch
National Wildlife Refuge.

This project was approved for Phase I Engineering and
Design in January 2016.

This project is on Priority Project List (PPL) 25.

The Fritchie Marsh Creation and Terracing sponsors include:

 

Wetland Soils

World Soil Day was officially celebrated on December 5th. This day was created in an effort to share the importance of healthy soil and advocate for the sustainable management of soil resources. Wetland soils, also known as hydric soils, are permanently or seasonally saturated by water and develop anaerobic conditions. Soils’ ability to store surface or ground water and bio-geochemical processes are critical to wetland function and maintaining a healthy ecosystem. Wetland scientists spend a great deal of their time performing soil surveys. Different wetland types feature different soil types. Soils should be evaluated for the presence of pesticides or dangerous elements that could cause damage to the vegetation and animals of that wetland site.

This day was created in an effort to focus on the importance of soil as a critical component of natural systems and as a vital contributor to human well-being.

Wetland_Soils_HydricSoil_Probe-1080x675

Interesting fact:

  • 95% of our food comes from the soil

 

Cameron-Creole Freshwater Introduction

CS-49-01

Virtually all of the project area marshes have experienced
increased tidal exchange, saltwater intrusion, and reduced
freshwater retention resulting from hydrologic changes
associated with the Calcasieu Ship Channel and the GIWW.
In addition, thousands of acres of marsh were damaged by
Hurricane Rita and again, more recently, by Hurricane Ike.
Because of man-made alterations to the hydrology, it is
unlikely that those marshes will recover without
comprehensive restoration efforts. The Cameron-Creole
Watershed Project has successfully reduced salinities and
increased marsh productivity. However, the area remains
disconnected from freshwater, sediments, and nutrients
available from the GIWW.

The freshwater introduction project would restore the
function, value, and sustainability to approximately 22,247
acres of marsh and open water by improving hydrologic
conditions via freshwater input and increasing organic
productivity.

map

The project area is located on the east side of Calcasieu Lake
and west of Gibbstown Bridge and Highway 27.

This project is on Project Priority List (PPL) 18.

The Cameron-Creole Freshwater Introduction sponsors include:

Keep up with this project and other CWPPRA projects on the project page.